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We consider the linear evolution of a localized vortex with Gaussian potential vorticity
that is superposed on a horizontal Couette flow in a rapidly rotating strongly stratified
fluid. The Rossby number, defined as the ratio of the shear of the Couette flow to the
Coriolis frequency, is assumed small. Our focus is on the inertia–gravity waves that are
generated spontaneously during the evolution of the vortex. These are exponentially
small in the Rossby number and hence are neglected in balanced models such as
the quasi-geostrophic model and its higher-order generalizations. We develop an
exponential-asymptotic approach, based on an expansion in sheared modes, to give
an analytic description of the three-dimensional structure of the inertia–gravity waves
emitted by the vortex. This provides an explicit example of the spontaneous radiation
of inertia–gravity waves by localized balanced motion in the small-Rossby-number
regime.

The inertia–gravity waves are emitted as a burst of four wavepackets propagating
downstream of the vortex. The approach employed reduces the computation of
inertia–gravity-wave fields to a single quadrature, carried out numerically, for each
spatial location and each time. This makes it possible to unambiguously define
an initial state that is entirely free of inertia–gravity waves, and circumvents the
difficulties generally associated with the separation between balanced motion and
inertia–gravity waves.

1. Introduction
The fast rotation and strong stratification of the atmosphere and oceans lead to a

time-scale separation between the slow advective motion termed balanced motion on
the one hand, and the fast inertia–gravity waves (IGWs) on the other hand. Because
of this time-scale separation, the interactions between the two types of motion are
weak, and to a first approximation at least, the balanced motion evolves independently
from the IGWs. This feature, now well supported by a number of theoretical studies
(e.g. Babin, Mahalov & Nicolaenko 2000; Majda & Embid 1998; Reznik, Zeitlin &
Ben Jelloul 2001), is a first key to the usefulness of balanced models, which filter out
IGWs; a second is the observation that, largely because of the low-frequency nature
of the large-scale forcing, the IGW activity is weak in many parts of the atmosphere
and oceans (ignoring tidal motion). That is not to say, however, that IGWs can be
neglected in all circumstances: they are crucial, for instance, to the middle-atmospheric
circulation and to oceanic mixing. As a result, there is a strong interest in identifying
and studying the mechanisms of IGW generation (e.g. Fritts & Alexander 2003).
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The so-called spontaneous generation is one such mechanism which has attracted
a great deal of attention in recent years. This describes the way in which the natural
evolution of a balanced flow leads to the emission of IGWs. It should be contrasted
with the generation of IGWs caused by the adjustment of a flow that is initially
unbalanced (e.g. Reznik et al. 2001, and references therein). Spontaneous generation
is now well understood in the small-Froude-number regime, where it is caused by
Lighthill-like radiation of IGWs with asymptotically large spatial scales and, hence,
frequencies that match those of the balanced motion (e.g. Ford, McIntyre & Norton
2000; Plougonven & Zeitlin 2002). Less well understood is the arguably more relevant
small-Rossby-number regime, where there is a frequency gap between IGWs of all
scales and balanced motion. On the basis of simple mechanistic models, governed
by ordinary differential equations (ODEs; Lorenz & Krishnamurthy 1987; Warn
1997; Vanneste 2004, 2008), it has been argued that the IGW generation in this
regime is exponentially weak in the Rossby number. This leads to a number of
subtle issues (such as the unambiguous separation between balanced motion and
IGWs) which, although largely resolved for ODE models, remain challenging for the
partial differential equations governing realistic geophysical flows. Even the direct
numerical simulation of IGW generation in idealized flows at small Rossby number
has proved highly delicate, and it is only in the last few years that reliable results,
in particular on the IGWs emitted in baroclinic life cycles, have been obtained
(e.g. O’Sullivan & Dunkerton 1995; Zhang 2004; Plougonven & Snyder 2005, 2007;
Viúdez & Dritschel 2006; Viúdez 2006). These results are still partial, however, and do
not answer such fundamental questions as the Rossby-number dependence of the IGW
amplitudes.

Therefore, there is a need for analytic treatments which give a precise description
of IGW generation in simple model flows. Such a treatment was provided by
Vanneste & Yavneh (2004) and Ólafsdóttir, Olde Daalhuis & Vanneste (2005) who use
exponential-asymptotic techniques to estimate the amplitude of the IGW oscillations
that appear in the evolution of a Couette flow pertubed by sheared modes, that
is, plane waves with time-dependent wavenumber in the cross-stream direction. In
this paper, we make use of their results to compute the IGWs generated in a
more realistic flow. Specifically, we study the IGWs that are radiated when a three-
dimensional vortex is sheared by a Couette flow. This is a significant step toward
the application of exponential asymptotics to realistic flows, particularly because the
vortex and hence the region of wave generation are localized in space. This is in
contrast with the sheared modes of Vanneste & Yavneh (2004) which have infinite
energy. The process that we examine may also be argued to occur in the atmosphere
and oceans, where vortices and large-scale shear are commonplace.

Our analysis takes as its starting point the equations of motion for a rotating
stratified fluid under the Boussinesq and hydrostatic approximations. We consider
the linear evolution of a vortex with Gaussian potential vorticity placed in a uniform
horizontal shear flow. The ratio of the shear amplitude to the Coriolis frequency
defines a Rossby number ε which is assumed to be small. In terms of potential
vorticity, the evolution is trivial: the ellipsoidal surfaces of constant potential vorticity
are deformed advectively, with their semi-axes slowly expanding and contracting whilst
tilting in the horizontal plane. In the quasi-geostrophic approximation, and indeed
in any balanced approximation, all the dynamical fields are slaved to the potential
vorticity and hence undergo an analogous slow evolution. In the full Boussinesq
model, however, exponentially small IGWs are emitted by the vortex and radiate
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away rapidly. We use an exponential-asymptotic approach to provide a largely analytic
description of these waves.

Our approach relies on the fact that, at a linear level, a localized disturbance
in a Couette flow can be described as a superposition of independently evolving
sheared modes. As mentioned above, the generation of IGW-like oscillations by a
single sheared mode has been studied by Vanneste & Yavneh (2004) and Ólafsdóttir
et al. (2005). They show how fast IGW oscillations are switched on through a
Stokes phenomenon, which occurs precisely when the phase lines of the sheared
mode are perpendicular to the Couette flow, and they derive an analytic expression
for the amplitude of the IGW oscillations. Superposing the IGW contributions of a
continuum of sheared modes, we obtain an approximation for the IGW field generated
by a vortex as a triple integral. Approximating this by a combination of asymptotic
and numerical means provides a detailed description of the structure of the IGWs
emitted. This takes the form of four wavepackets which are generated when the
horizontal semi-axes of the ellipsoid are approximately aligned with the streamwise
and cross-stream directions. Subsequently these wavepackets propagate horizontally
and vertically in the background shear.

It is worth emphasizing that our analytic approach eliminates most of the
conceptual difficulties encountered when attempting to demonstrate spontaneous
IGW generation. In particular, the asymptotic treatment makes it possible to define
an initial state of the vortex that is completely balanced. More precisely, the imbalance
at the initial time is negligible compared to the smallest terms captured by our
asymptotic approach, namely the exponentially small IGWs that appear afterwards.
These IGWS can then be unambiguously identified as resulting from spontaneous
generation. The IGWs are also completely disentangled from the balanced motion,
which we do not describe in detail. This state of affairs contrasts sharply with more
numerical treatments of the problem of IGW generation, where sophisticated methods
are required both for the initialization of the balanced state and for the diagnosis
of the IGWs generated (cf. Viúdez & Dritschel 2004). Of course, a limitation of
our treatment is that, so far, it applies to very specific flows and under the severe
restriction of linearization.

This paper is organized as follows. The equations of motion and the special solution
under study are introduced in § 2. The expansion of this solution in terms of sheared
modes and the choice of potential-vorticity distribution are discussed in § 3. The
asymptotic analysis leading to the explicit description of the IGWs is described in
§ 4. There we review the relevant exponential-asymptotic results for sheared modes,
exploit them to express the vertical vorticity associated with IGWs as a triple integral,
and sketch the method used to estimate this integral. Some results, illustrating the
spontaneous generation of IGWs in an anticyclonic flow, are presented in § 5. The
paper concludes with a discussion in § 6. A large part of the work reported in this
paper is rather technical. Therefore §§ 3–4 only summarize the method employed, and
we refer the reader to the two appendices for a more detailed analysis.

2. Model
We study the spontaneous generation of inertia–gravity waves by a slow balanced

motion in a rotating stratified fluid. The fluid domain is assumed to be unbounded in
the three spatial dimensions. We model the fluid using the Boussinesq and hydrostatic
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approximations and write the equations of motion as

DtU − f V = −Φx, (2.1)

DtV + f U = −Φy, (2.2)

B = Φz, (2.3)

DtB + N 2W = 0, (2.4)

Ux + Vy + Wz = 0. (2.5)

Here U = (U, V, W ) are the usual Cartesian components of the velocity, Dt = ∂t + U · ∇
is the material derivative, f is the Coriolis parameter, Φ is the geopotential, related
to the pressure P and constant mean density ρ̄ by P = Φ/ρ̄, B = −gρ/ρ̄ is the
buoyancy (with ρ the density perturbation), and N is the constant Brunt–Väisälä
frequency. Note that the hydrostatic approximation is made for convenience only;
no conceptual difficulties would arise if it were relaxed, although the computations
would be considerably more involved.

We consider solutions of (2.1)–(2.5) which consist of two parts: a horizontal Couette
flow, with constant vorticity −Σ , and a small-amplitude perturbation. We therefore
write the dynamical fields as

(U, V, W, Φ, B) =

(
Σy, 0, 0, −f Σy2

2
, 0

)
+ (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), ϕ(x, y, z, t), b(x, y, z, t)), (2.6)

and derive linearized equations of motion for the perturbation fields (u, v, w, φ, b).
These equations are identical to (2.1)–(2.5), with upper-case variables replaced by their
lower-case counterparts, and Dt = ∂t +Σy∂x . They imply that the potential-vorticity
perturbation

q = N 2ζ + (f − Σ)bz,

is conserved:

Dt q = (∂t +Σy∂x)q = 0, hence q(x, y, z, t) = q0(x − Σyt, y, z), (2.7)

where q0 is the initial distribution of q . Note that the linearization of (2.1)–(2.5)
is justified if the vertical vorticity associated with q0 is negligible compared to the
background vorticity Σ , that is, if q0/N

2 � Σ . We assume that this condition holds.
Although the approach of this paper applies to arbitrary localized distributions of

potential vorticity, we concentrate in what follows on a particularly simple situation
where q0 is given by

q0(x, y, z) =
π3/2Nf

23α1α2α3

exp

{
−

[
(x + ΣTy)2

4α2
1

+
y2

4α2
2

+
z2

4α2
3

]}
, (2.8)

where αi , i = 1, 2, 3 and T are constants, and the factor π3/2Nf/(23α1α2α3) is introduced
for later convenience. To write q0 in this form, we have taken advantage of the
linearity of the problem: the right-hand side of (2.8) should be multiplied by a
constant, with dimension of (length)3 × (time)−1, to obtain a dimensionally consistent
potential vorticity of any desired amplitude.

According to (2.7), the potential vorticity at later time is given by

q(x, y, z, t) =
π3/2Nf

23α1α2α3

exp

{
−

[
(x − Σ(t − T )y)2

4α2
1

+
y2

4α2
2

+
z2

4α2
3

]}
. (2.9)
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Figure 1. Schematic of the evolution of the perturbation potential vorticity q in the Couette
flow for Σ > 0 and T > 0. The leftmost surface represents a particular level surface of q at
t =0 when level surfaces are ellipsoids tilted against the shear; the central sphere represents
the same level surface at t = T when level surfaces are ellipsoids with axes aligned with the
coordinate axes; the rightmost surface represents the level surface at t > T when level surfaces
are ellipsoids tilted with the shear. The centres of the ellipsoids, which are fixed in time, have
been offset in the x-direction for clarity.

This describes a three-dimensional Gaussian vortex which becomes deformed and
tilted in the horizontal under the action of the Couette flow, see figure 1. The
parameter T controls the initial tilt against the shear and is such that the three axes
of the ellipsoidal level surfaces of q are aligned with the (x, y, z)-axes at t = T . If
α1 =α2 = α3, in particular, q is spherically symmetric at t = T . The parameter T is
introduced so that we can vary the shape of the ellipsoid at the time, taken to be
t = 0, when the solution will be assumed to be perfectly balanced.

Our interest is in the behaviour of dynamical fields which, unlike q , can display
IGW activity. We focus on the rotation-dominated regime where the Rossby number,
naturally defined as

ε =
|Σ |
f

,

is small. In this regime, suitably initialized flows are described well by balanced models
(quasi-geostrophic and higher order) which filter out IGWs completely (e.g. Warn
et al. 1995). In these models all the dynamical fields can be deduced from q and so,
apart from fine details depending on each specific balanced model, their evolution
is completely understood from (2.9). In the rest of the paper we demonstrate how
IGWs, not captured by balanced models, are emitted spontaneously in the course of
this evolution. We describe these IGWs using an asymptotic method and show that
they are exponentially small in ε.
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3. Sheared modes
Small-amplitude perturbations to a Couette flow which are localized in space can

be conveniently represented as superpositions of sheared modes; specifically, the
perturbation fields can be written as

u(x, y, z, t) =

∫
�3

û(k, l, m, t) exp[i(kx + (l − kΣt)y + mz)] dk dl dm, (3.1)

with similar expressions for v, w, φ and b. Note that this representation differs from
the usual Fourier transform in that the wavevector associated with each mode and
given by (k, l − kΣt, m) depends on time.

Introducing the expansion (3.1) into the linearized perturbation equations leads to
a system of ODEs in time for the amplitudes (û, v̂, ŵ, φ̂, b̂), with (k, l, m) appearing
as parameters. This system of ODEs is derived in McWilliams & Yavneh (1998),
Vanneste & Yavneh (2004) (for non-hydrostatic flows), and Ólafsdóttir et al. (2005).
It reduces to a single second-order equation for the amplitude

ζ̂ = ikv̂ − i(l − Σkt)û

of the vertical component of the perturbation vorticity. This reduction relies on the
conservation (2.7) of the potential vorticity. In terms of the amplitude q̂ of q in the
sheared-mode expansion, this conservation becomes

q̂t = 0, hence q̂(k, l, m, t) = q̂0(k, l, m), (3.2)

where q̂0 is the Fourier transform of q0. From (2.8), we find q̂0 to be given by

q̂0(k, l, m) = Nf exp
{

−
[
α2

1k
2 + α2

2(l − kΣT )2 + α2
3m

2
]}

. (3.3)

Taking (3.2) into account, and non-dimensionalizing time by the inverse shear |Σ |
leads to the following ODE for ζ̂ (see e.g. Vanneste & Yavneh (2004) or Ólafsdóttir
et al. (2005) for a derivation):

ε2[ζ̂t t + b(t − σ l/k)ζ̂t ] + c(t − σ l/k)ζ̂ =
1 + (t − σ l/k)2

N2β2
q̂0, (3.4)

where

b(t) = − 2t

1 + t2
, (3.5)

c(t) = (1 − σε)

(
1 − 2σε

1 + t2

)
+

1 + t2

β2
, (3.6)

and σ = sign Σ indicates whether the shear is anticyclonic (σ = 1) or cyclonic (σ = −1).
A second non-dimensional number appears in (3.4) in addition to ε, namely

β =
f m

Nk
,

which can be interpreted as the inverse square-root of a Burger number and will be
treated as O(1).

Now, the explicit dependence of (3.4) on σ l/k, q̂0 and N 2 is readily eliminated by
introducing the new dependent variable ζ̃ (k, l, m, t) defined by

ζ̂ (k, l, m, t) =
q̂0

N2
ζ̃ (k, l, m, t − σ l/k)

=
f

N
exp

{
−

[
α2

1k
2 + α2

2(l − kσT )2 + α2
3m

2
]}

ζ̃ (k, l, m, t − σ l/k), (3.7)
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where T has also been non-dimensionalized by |Σ |. Using (3.2), this transformation
reduces (3.4) to

ε2

(
d2ζ̃

dt2
+ b(t)

dζ̃

dt

)
+ c(t)ζ̃ =

1 + t2

β2
, (3.8)

with b(t) and c(t) still given by (3.5)–(3.6). This equation is the hydrostatic limit of
that derived by McWilliams & Yavneh (1998) and Vanneste & Yavneh (2004). It is
identical to that derived by Ólafsdóttir et al. (2005). These three papers focused on
a single sheared mode, that is, on a single wavevector (k, l, m). Here we exploit the
asymptotic results of the latter two papers to compute the vertical component of
the vorticity ζ (x, y, z, t) associated with a localized potential vorticity perturbation.
According to (3.7), it is related to the solutions of (3.8) obtained for different values
of (k, l, m) by

ζ (x, y, z, t) =
1

N2

∫
�3

q̂0(k, l, m)ζ̃ (k, l, m, t − σ l/k)

× exp[i(kx + (l − kΣt)y + mz)] dk dl dm. (3.9)

We now use an explicit asymptotic form for ζ̃ to derive an approximation to the IGW
component of ζ (x, y, z, t).

4. Asymptotic analysis

In Ólafsdóttir et al. (2005), it is shown that solutions of (3.8) which are well balanced
for t < 0 develop fast IGW oscillations for t > 0. This generation of oscillations can
be identified as a Stokes phenomenon: a well-balanced, oscillation-free dominant
solution of (3.8) switches on a subdominant homogeneous solution as the Stokes line
Re t = 0 is crossed. The switching on is continuous (Berry 1989), but takes place over
a short time, of O(ε1/2), so we can write the solution as

ζ̃ (k, l, m, t) = ζ̃bal(β, t) + ζ̃igw(β, t)H (t), (4.1)

where H (t) denotes the Heaviside function and the notation emphasizes that ζ̃bal and
ζ̃igw depend on (k, l, m) through β only. The balanced part ζ̃bal of the solution is given
by an asymptotic series whose details are unimportant for our purpose. The IGW
part, which is a homogeneous solution of (3.8), is given to leading order in ε by

ζ̃igw(β, t) ∼ −
√

2|β|π
ε

exp[−π(1 + β2 − σβ2ε)/(4|β|ε)]

×
√

1 + β2 + t2 sin R(t, ε) − σ |β|t cos R(t, ε)

(1 + β2 + t2)1/4(1 + β2)3/4
, (4.2)

where

R(t, ε) =
1

2|β|ε

(
t
√

1 +β2 + t2 + (1 + β2) ln

(
t +

√
1 + β2 + t2√
1 + β2

))

− σ |β|
2

ln

(
t +

√
1 + β2 + t2√
1 +β2

)
.

Note that Ólafsdóttir et al. (2005, equations (4.7) and (4.8)) give this result for σ = −1
only (with a typo in the argument of the exponential independent of ε); the derivation
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is however readily extended to the case σ = 1. Note also that

dR

dt
(t, ε) =

√
1 + β2 + t2

|β|ε + O(1)

can be recognized as the non-dimensional frequency of hydrostatic IGWs with
wavevector (k, −σkt, m).

Together with (3.9), (4.2) provides an explicit expression for the IGW part of
ζ (x, y, z, t). Some care is needed, however, to ensure that meaningful initial conditions
are satisfied at t =0. Equations (4.1)–(4.2) are obtained assuming that there are no
IGW oscillations for t < 0, at least to the level of accuracy of the asymptotic approxi-
mation (4.2). They then describe the spontaneous generation of oscillations that are
present for t > 0. The shift of t by σ l/k involved in (3.9) means that different sheared
modes, with different l/k, generate oscillations at different times. In particular, modes
with σ l/k < 0 generate oscillations for t < 0. This is problematic since it implies that
IGWs are present at all times, when a natural initial condition is that the flow is
completely balanced, that is, completely free of IGWs, at t = 0. Indeed, we want to
ensure that the IGW activity vanishes in the limit t → 0, so that the subsequent IGW
generation is genuinely spontaneous. This condition can be imposed without difficulty
by recognizing that one can add to (4.1) arbitrary combinations of the homogeneous
solutions of (3.8), hence, in particular, an arbitrary multiple of ζ̃igw. Thus, we replace
(4.1) by

ζ̃ (k, l, m, t) = ζ̃bal(β, t) + ζ̃igw(β, t)[H (t) + C(k, l, m)], (4.3)

and choose C(k, l, m) to eliminate the IGW component of ζ (x, y, z, t) for t = 0. It is
clear from (3.9) that this is achieved by taking

C(k, l, m) = −1 for σ l/k < 0 and C(k, l, m) = 0 for σ l/k > 0. (4.4)

For t � 0, this ensures that the sheared modes with σ l/k < 0, for which IGW
oscillations appear for some t < 0, do not contribute to (3.9), while the modes with
σ l/k > 0 contribute for t > σ l/k. It may be helpful to think of (4.4) as imposing a
certain amount of IGW activity as t → −∞; this is chosen to precisely cancel the
activity generated spontaneously for −∞ < t < 0 and hence to lead to a completely
balanced state at t =0.

With the choice (4.3)–(4.4) and for t � 0, (3.9) becomes

ζ (x, y, z, t) =
1

N2

∫
�3

q̂0(k, l, m)ζ̃bal(β, t − σ l/k) exp[i(kx + (l − σkt)y + mz)] dk dl dm

+
σ

N2

∫ ∞

−∞

(∫ 0

−∞

∫ 0

σkt

+

∫ ∞

0

∫ σkt

0

)
q̂0(k, l, m)

× ζ̃igw(β, t − σ l/k) exp[i(kx + (l − σkt)y +mz)] dl dk dm (4.5)

= ζbal(x, y, z, t) + ζigw(x, y, z, t). (4.6)

We focus on the IGW component which, taking (3.3) into account, takes the more
explicit form

ζigw(x, y, z, t) =
σf

N

∫ ∞

−∞

(∫ 0

−∞

∫ 0

σkt

+

∫ ∞

0

∫ σkt

0

)
ζ̃igw(β, t − σ l/k)

× exp
{

−
[
α2

1k
2 +α2

2(l − kσT )2 +α2
3m

2
]

+ i(kx + (l − σkt)y +mz)} dl dk dm, (4.7)
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with ζ̃igw given in (4.2). This is a closed-form expression for the IGWs radiated
spontaneously by the sheared vortex in the limit ε � 1. Four observations can be
made about this expression. First, it is clear that limt→0 ζigw = 0: as expected, the
vortex is well balanced at t = 0, and the IGWs appear smoothly for t > 0. Second,
it is obvious from (4.2) that ζigw is exponentially small in ε. A crude estimate for
its magnitude, based on the maximum amplitude of ζ̃igw (attained for |β| =1), is
exp[−π/(2ε)]. This gives a rough idea of the importance of the IGWs radiated, even
though the exponential dependence of ζigw on ε depends of course on (x, y, z, t). A
third observation is that, because of the O(1) prefactor in (4.2), the IGW amplitude is
larger for an anticyclonic shear (σ = 1) than for a cyclonic shear (σ = −1). A fourth
observation relates to the role of the parameter T controlling the initial tilt of the
potential-vorticity distribution against the shear. Consider the case where T > 0, so
that the ellipsoidal vortex is initially titled against the shear. It can be seen from (4.7)
that the dominant contribution to ζigw comes from wavenumbers satisfying l ≈ σkT .
Since phase cancellations are minimized in the integral for l = σkt , we can expect
the maximum of IGW generation for t ≈ T , that is, around the time when the axes
of the constant-potential-vorticity ellipsoids are parallel to the coordinate axes. This
can also be explained as follows. Each sheared mode leads to the generation of
IGW oscillations at the ‘Stokes’ time σ l/k. The time of maximum IGW generation
can be expected to coincide with the ‘Stokes’ time of the modes with the largest
amplitudes, namely the modes with l = kσT (cf. (3.3)), leading to t ≈ T for the
maximum generation. A reason for introducing the parameter T is that by taking
T large enough, we can ensure a good separation between the initial time, when we
impose the absence of any IGWs, and the time at which significant wave generation
occurs. The picture of the IGW generation that is obtained in this case is then
approximately independent of the specific choice of T , or in other words, of the
specific shape of the potential-vorticity ellipsoid at the time t = 0 when we choose to
impose that IGWs are absent. Physically, this is related to the fact that a large T

corresponds at t =0 to highly elongated ellipsoids which have little dynamical activity
(since the associated velocity field is weak) and hence are well balanced.

To evaluate (4.9) in practice, it is necessary to make further analytical progress in
order to limit the amount of computation required. We proceed in four steps: (i) the
integration variables in (4.9) are changed from (k, l, m) to (k, β, τ ), with τ = t−σ l/k;
(ii) the integration with respect to k is carried out explicitly; (iii) an asymptotic method
is used to approximate the integral with respect to τ ; and (iv) the final integration
with respect to β is computed numerically. Details of the necessary calculations are
given in Appendix A.

The most delicate point in these calculations arises in step (iii) where the integral in
τ is found to be dominated either by a saddle point or by one of the two endpoints
τ = 0 and τ = t , depending on (x, y, z, t). To deal with this, we have implemented a
version of Bleistein’s (1966) method which gives a uniform approximation to this type
of integral and is discussed in Appendix B. Note that the saddle point needs to be
determined numerically for each value of (x, y, z, t) and β .

An important outcome of the asymptotic treatment in (iii) is that for t = O(1) ζigw

varies over spatial scales of the order of ε−1/2, much larger than the vortex scale.
An identical scaling has been found in Vanneste (2006) in a much simpler model of
IGW radiation. The IGW-like waves considered in that paper are one-dimensional,
with dispersion relation ω = ± (1 + k2)1/2/ε, and their amplitude is proportional
to exp(−αω) for some wavenumber-independent constant α > 0. In this case, it is
straightforward to see that the wave-radiation process is dominated by waves with
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small k corresponding to the minimum of ω. More precisely, since ω(k) ≈ (1 + k2/2)/ε
for k ≈ 0, an O(ε1/2) neighbourhood of k =0 dominates, leading to the ε−1/2 scaling
for the spatial dependence of the waves. The present situation is more complex, with
sheared modes that have time-dependent frequencies, and amplitudes that cannot be
related so simply to frequencies. However, it is similarly a small O(ε1/2) neighbourhood
of the wavenumbers k =m = 0 (with β ≈ 1) which is found to dominate the IGW
generation process.

In the next section, we present some illustrative results of our approach and describe
the structure of the IGWs generated by a vortex.

5. Results
We report results obtained for T = 3 in the case σ = 1, that is for an anticyclonic

flow. Our choice of the ellipsoidal potential vorticity (2.9) takes the semi-axes to be
α1 = α2 = 1 and α3 = f/N . This implies that at the time t = T = 3, when maximum
wave generation can be expected, the potential-vorticity distribution is spherically
symmetric in coordinates stretched by the Prandtl ratio N/f in the vertical.

We have chosen to present results for the Rossby number ε = 0.25. This is a
moderately small value, giving significant amplitudes for the IGW generated, but also
a value for which our asymptotic approximations have a reasonably good accuracy.
Qualitatively, the results for other values of ε are similar, except that the amplitude of
the IGWs radiated increases rapidly with ε as expected from the order of magnitude
exp[−π/(2ε)].

As mentioned above and discussed in more detail in Appendix A, the spatial scale
of the IGWs radiated by the vortex is ε−1/2. Furthermore, the vertical dependence is
through Nz/f (see (A 1)–(A 2)). It is then natural to regard the spatial structure of
the IGWs as depending of the scaled coordinates (X, Y, Z) = ε1/2(x, y, Nz/f ). With
the choice α3 = N/f , the vertical vorticity ζigw(X, Y, Z, t) becomes independent of f

and N .
For both the computation and the presentation of the results, we can take advantage

of symmetries of the problem: ζigw is left invariant by the reflection about the
plane z = 0 and by the rotation by π around the z-axis. Because the IGWs are
also very weak upstream of the vortex, we can restrict our attention (for σ = 1)
to the octant {x � 0, y � 0, z � 0}, keeping in mind that there is a symmetric IGW
activity in the other three octants {x � 0, y � 0, z � 0}, {x � 0, y � 0, z � 0} and
{x � 0, y � 0, z � 0}.

Figures 2 and 3 summarize our results for ε = 0.25 and σ =1. They show ζigw in
horizontal (X, Y )-planes corresponding to the three altitudes Z = 0, Z = 10 and Z = 20
and for the times t = 1, 2, . . . , 7 (figure 2) and t =8, 9, 10 (figure 3). The range of values
of X is extended for the three later times to show the full extent of the IGWs radiated;
for these times, the results on the plane Z = 0 are not shown since ζigw has become weak
at small altitudes. The smallest value of Y shown in the two figures is Y =1 because
we found it difficult to obtain smooth results for 0 � Y < 1 and Z = 0 when t ≈ 3; the
switch between saddle and endpoint contributions to ζigw is then quite abrupt.

To interpret the numerical values attained by ζigw, it can be observed that the
ratio ζigw/ζbal is unaffected by the scaling used for q0, and that the numerical values
obtained for ζbal from (4.6) are of order one; the amplitude indicated by the grey scale
in figures 2 and 3 can therefore be taken as an estimate for the inertia–gravity-wave
activity relative to the balanced activity. It is worth emphasizing that because our
approach is essentially analytic, ζigw is obtained at each point in space and time in a



Wave radiation by a sheared vortex 179

25

20

15

10

5

Y

25

20

15

10

5

Y

25

20

15

10

5

Y

25

20

15

10

5

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Y

X X X

–1 × 10–3 1 × 10–30

t = 1

Z = 0 Z = 10 Z = 20

2

3

4

Figure 2. For caption see next page.

completely independent fashion, so the choice of time interval and spatial gridding is
entirely dictated by visualization considerations.

The figures reveal how the sheared vortex (only a very small ellipsoid in the scaled
coordinates employed) radiates four packets of comparatively large-scale IGWs (one
in each of the four downstream octants). As expected, the bulk of the IGW radiation
occurs around t = T = 3. At these early times, the IGW activity is confined near
Z = 0, but the packets rapidly propagate vertically; as they do so, they are affected
by the horizontal shear which tilts the phase lines towards the X-axis and reduces
horizontal scales. The propagation and shearing of the IGWs is not the only part of
the response to the vortex: in particular, at Z = 0, there is a clear stationary pattern for
X < 10. Examination of our asymptotic evaluation of the integral (4.7) indicates that
this stationary pattern arises from one of its endpoints, namely τ = 0. This endpoint
contribution corresponds to the sheared modes with l = σkt , that is, to the modes
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Figure 2. Vertical vorticity ζigw associated with the IGWs radiated by an ellipsoidal vortex
in an anticyclonic horizontal Couette flow. The parameters are ε = 0.25 and T = 3, and the
scaled spatial coordinates (X, Y,Z) = ε1/2(x, y,Nz/f ) are used. ζigw is shown as a function of
(X, Y ), for Z =0, 10 and 20 and for t = 1, 2, . . . , 7. The vortex is localized near the origin,
with a typical size ε1/2 = 0.5 in the scaled coordinates; its shape is indicated by the contour
line corresponding to q =exp(−30).

whose IGW oscillations are precisely switched on at time t . The y-independent spatial
structure of these modes (see e.g. (3.9)) explains why the stationary pattern makes
only a small angle with the Y -axis. With its wider X-range, figure 3 demonstrates
how dispersion spreads the packets as they propagate. Nevertheless, the evolution is
largely dominated by advection, and most of the wavepacket energy surrounds the ray
x + z = σ ty, as the asymptotic derivation of Appendix A suggests should be the case.

To conclude, we point out that we have carried out similar computations in the
case of a cyclonic flow (σ = −1). Apart from the obvious changes in the location
of the wavepackets, always located downstream of the potential-vorticity ellipsoid,
the structure of the IGWs is similar to that just described. A significant difference,
however, is that the amplitude is smaller by an O(1) factor, as expected.

6. Discussion
In this paper, we have given an explicit description of the IGWs that are

generated spontaneously by a simple balanced flow. The regime considered is the
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Figure 3. Same as figure 2, but for the later times t = 8, 9 and 10. The altitude Z = 0, where
the IGW activity is weak, is not shown.

small-Rossby-number quasi-geostrophic regime where the IGWs can be expected to
be exponentially small in the Rossby number. The exponential smallness has been
demonstrated previously for models such as the Lorenz 5-component model (Lorenz &
Krishnamurthy 1987; Vanneste 2004) and an extension thereof (Vanneste 2006). Our
results show that it also holds in a more realistic context of localized solutions of the
three-dimensional Boussinesq equations. The type of solution considered, consisting
of a localized potential-vorticity perturbation superposed on a horizontal Couette
flow, is very specific, and is guided by the possibility of a complete asymptotic
treatment relying on an expansion in sheared modes. The results nonetheless usefully
complement recent numerical work which gives examples of spontaneous generation
of IGWs in more complicated and realistic flows but does not provide as clear-
cut a description of the waves as that given here. The advantages of an asymptotic
approach, when available, are evident when one considers the difficulties in initializing
balanced flows and in extracting IGW fields from data that are typically encountered
in numerical studies of IGW generation (see Viúdez & Dritschel 2004, for a technique
addressing the difficulties). These are completely avoided here: the exponential-
asymptotic approach allows us to define an initial state that is unambiguously free of
IGWs, and to study the IGWs in isolation from the much stronger balanced motion.
In view of these advantages, it would be highly desirable to develop exponential-
asymptotic techniques that apply to a broader class of flows than that considered
in this paper. This would require an approach that does not rely on the reduction
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from partial to ordinary differential equations made possible here by the expansion
in sheared modes.

One of the outcomes of our work is that the typical length scale of the IGWs
radiated spontaneously depends on the Rossby number like ε−1/2. That long waves
are emitted is reminiscent of the situation in the small-Froude-number regime
F � 1, ε = O(1), where the IGW wavelengths scale like F −1 (e.g. Ford et al. 2000;
Plougonven & Zeitlin 2002). The physics behind the two scalings is rather different,
however. In the small-Froude-number regime, the radiation can be attributed to a
resonance between IGWs and balanced motion, and long waves are selected because
their low frequencies match those of the balanced motion. In the small-Rossby-number
regime ε � 1, F = O(ε), by contrast, frequency matching is impossible, whatever the
wave scale. The wave amplitudes are then of the form exp(−α/ε), where α depends
on the wavenumbers. The typical scales that emerge from the radiation process
correspond to wavenumbers minimizing α. Saddle-point arguments suggest that these
should be in an O(ε1/2) neighbourhood of the origin, thus explaining (in a highly
schematic manner) the O(ε−1/2) scales obtained. It should be noted that the IGWs
observed in numerical simulations of spontaneous generation are typically short
compared with the flow scale (e.g. O’Sullivan & Dunkerton 1995; Zhang 2004;
Plougonven & Snyder 2005, 2007; Viúdez & Dritschel 2006; Viúdez 2006). One might
speculate on the reasons for this and invoke, in particular, the presence in these
simulations of active small-scale features in the balanced flow, or the possibility of
unbalanced instabilites which typically involve small-scale waves (see Vanneste &
Yavneh 2007, and references therein).

We conclude by returning to some of the assumptions that we made, and discuss
how they may be relaxed. A first assumption is the adoption of the hydrostatic
approximation. This is made for convenience only, since the explicit form (4.2) for the
IGW-component of sheared modes can be generalized to the non-hydrostatic case
using the results of Vanneste & Yavneh (2004). We note that relaxing the hydrostatic
approximation is necessary if the large-time behaviour of the IGWs is to be modelled
accurately: because of the increase in the cross-stream wavenumber |l| ≈ |Σkt |, the
horizontal wavenumber is only negligible compared to the vertical one in the IGW
dispersion relation if t � N/(Σf ) (recall that the dominant wavenumbers satisfy
β = f m/(Nk) ≈ 1). However, the asymptotic evaluation of the integral giving ζigw

would be considerably more difficult without the hydrostatic approximation, notably
because the generalization of (4.2) has a complicated form, involving elliptic integrals
rather than elementary functions.

A second assumption is that of an ellipsoidal potential-vorticity distribution. This
was made for definiteness, and any localized potential vorticity could in principle be
chosen, although analytical progress with the resulting integral form of ζigw will only
be possible for simple enough choices. An interesting choice, in view of the sharp
potential-vorticity gradients often observed in the atmosphere and oceans, would be
that of a piecewise-constant potential vorticity, and in particular of a patch of uniform
potential vorticity. For an ellipsoidal patch, preliminary computations suggest that
two integrations could be carried out analytically, as is the case in this paper. The
asymptotic evaluation of the second differs entirely from the one presented here
and would require careful consideration. Nonetheless, we can already remark that a
piecewise-constant potential vorticity does not affect the conclusion that the IGWs
generated spontaneously are exponentially small in the Rossby number. Thus spatial
smoothness does not appear essential for exponential smallness, unlike temporal
smoothness which is, of course, critical.
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Finally, our results rely on the linearization of the dynamics of perturbations to the
horizontal Couette flow. This approximation is critical in two respects: first, it reduces
the evolution of the potential vorticity to a simple advection by a known flow, and
second it makes it possible to treat the perturbation as a superposition of sheared
modes and hence to reduce the dynamics to ordinary differential equations. Treating
a fully nonlinear problem would require not only obtaining an approximation to the
potential-vorticity dynamics that is valid to all orders in the Rossby number, but also
developing exponential-asymptotic techniques for partial-differential equations.

J. V. was funded by a NERC Advanced Research Fellowship.

Appendix A. Evaluation of ζigw

This Appendix details the method employed to estimate the triple integral (4.7)
giving the IGW part of the vertical vorticity ζigw for the initial potential vorticity (2.8).

A.1. Formulation

A first step is to change the integration variables from (k, l, m) to (k, τ, β) with
τ = t − σ l/k. Noting that the Jacobian of the transformation is Nk2/f and we find
after some calculations that

ζigw(x, y, z, t)= 2

∫ ∞

−∞

∫ t

0

ζ̃igw(β, τ )

∫ ∞

0

k2e−A(β,τ )k2

cos[B(β, τ )k] dk dτ dβ, (A 1)

where

A(β, τ ) = α2
1 +α2

2(τ − t + T )2 +α2
3N

2β2/f 2 and B(β, τ ) = x − στy + βNz/f. (A 2)

We remark that these expressions indicate that a natural vertical coordinate is Nz/f , as
is usual with the quasi-geostrophic scaling used in this paper. Since ζ̃igw is independent
of k, we can carry out the integration with respect to k explicitly to find that

ζigw(x, y, z, t) =
√

π

∫ ∞

−∞

∫ t

0

ζ̃igw(β, τ )e−B2(β,τ )/(4A(β,τ ))

×
(

1

2A3/2(β, τ )
− B2(β, τ )

4A5/2(β, τ )

)
dτ dβ.

Because ζ̃igw depends on τ and β in a complicated manner (see (4.2)), it is not
possible to perform further explicit integrations. We can however take advantage of
the smallness of ε to approximate ζigw.

To estimate the small-ε behaviour of the inner integral

Iβ(x, y, z, t) =
√

π

∫ t

0

ζ̃igw(β, τ )e−B2(β,τ )/(4A(β,τ ))

(
1

2A3/2(β, τ )
− B2(β, τ )

4A5/2(β, τ )

)
dτ,

we substitute the function ζ̃igw by its leading behaviour (4.2). Writing the sine and
cosine as sums of imaginary exponentials, this gives the asymptotic relation

Iβ(x, y, z, t) ∼ Im

∫ t

0

g(β, τ, ε)e−f (β,τ )/ε dτ, (A 3)
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where

f (β, τ ) = ε
B2(β, τ )

4A(β, τ )
+

π

4

(
1

|β| + |β|
)

+
i

2|β|

(
τ
√

1 + β2 + τ 2 + (1 + β2) ln

(
τ +

√
1 + β2 + τ 2√
1 +β2

))
, (A 4)

g(β, τ, ε) = −π

√
2|β|
ε

√
1 + τ 2

(1 + β2 + τ 2)1/4(1 + β2)1/4

(
1

2A(β, τ )
− B2(β, τ )

4A5/2(β, τ )

)
e−h(β,τ ),

(A 5)

and

h(β, τ ) = −σ

(
π|β|
4

+
i|β|
2

ln

(
τ +

√
1 +β2 + τ 2√
1 + β2

)
+ i arcsin

(
|β|τ√

1 +β2
√

1 + τ 2

))
.

(A 6)

We have written the integral (A 3) in the form of a Laplace integral. In doing so, we
have treated the first term in f (β, τ ) as an O(1) term in spite of the explicit factor ε.
This is because a distinguished limit is achieved in (A 3), and the largest values of Iβ

are attained, when (x, y, z) are of order ε−1/2 and hence B2 =O(ε−1) in the first term
of f (β, τ ). In what follows, we will therefore treat ε1/2(x, y, z) as O(1) parameters,
but we will also retain terms necessary for our estimate of (A 3) to be valid uniformly
when B = O(1).

The integral (A 3) can be dominated by the saddle point of f (β, τ ), by one of
the endpoints of the interval of integration, or simultaneously by the saddle and
one of the endpoints. To handle this behaviour in a continuous manner, a uniform
asymptotic method is called for; we use Bleistein’s (1966) method which is designed
to uniformly combine the contributions from an endpoint and from a saddle point in
an integral. Details of this method are presented in Appendix B. There we show that
if the dominant endpoint is τe = 0 and the saddle point of f (β, τ ) is τs, a uniform
approximation to (A 3) is

Iβ(x, y, z, t) ∼ Im

{
e−b/ε

[√
πε

2
ea2/(2ε)

(
1 + erf

(
a√
2ε

))
(α0 + α1ε) + (β0 + β1ε) ε

]}
,

(A 7)

where a and b satisfy

f (τe) = b, f (τs) = b − a2

2
,

and α0, β0, α1 and β1 are defined in terms f and g in (B 7)–(B 8) and (B 11)–(B 12).
Note that we have included the first two terms in the expansion near each of the

saddle point and endpoint: this proves necessary to obtain an approximation accurate
over a wide enough range of values of (x, y, z, t). When the saddle point τs is close
to the other endpoint τe = t we obtain an analogous approximation as explained in
Appendix B.

Note also that there is no explicit analytic expression for the (complex) saddle point
τs, but that it can always be found numerically. It is therefore possible to compute
the value of Iβ from (A 7) numerically, as is required for the subsequent numerical
integration over β .
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Figure 4. Integral Iβ as a function of X = ε1/2x for ε = 0.1, σ = −1, Y = ε1/2y = 8, z = 0,
t =1 and T = 0. (a) Comparison of a numerical evaluation of Iβ (solid line) with asymptotic
estimates giving the endpoint contribution (dash-dotted line) and saddle-point contribution
(dashed line). (b) The estimate obtained using Bleistein’s method uniformly combining the
contributions from the saddle point and from the endpoint τe = 0 (solid line) or τe = t (dashed
line).

Figure 4 demonstrates the validity of the estimate (A 7) and the usefulness of
Bleistein’s method. It compares a numerical evaluation of Iβ with several asymptotic
estimates as a function of X = ε1/2x for ε = 0.1 and other parameters fixed. Figure 4(a)
illustrates the shortcomings of using separately the saddle-point and endpoint
contributions. Figure 4(b) validates the use of Bleistein’s method applied with either
the endpoint τe = 0 or τe = t .

A.2. Numerical implementation

We proceed as follows for the numerical computation of ζigw. For fixed x, y, z and
t , we find the saddle point τs numerically for each value of β and then compute
an approximation to Iβ using Bleistein’s method. We use either τe = 0 or τe = t as
the endpoint for Bleistein’s method, depending on which is closer to the saddle.
Integrating the approximated values of Iβ numerically using Simpson’s method gives
an approximation of ζigw. The integration range for β is infinite, but we can integrate
over a finite range using the fact that Iβ is strongly peaked in the neighbourhood of
|β| =1, as can be expected from the second term in (A4).

The computations can be minimized by taking advantage of some symmetries: it
is easy to check that

Iβ(x, −y, z, β, t) = Iβ(−x, y, −z, β, t), (A 8)

Iβ(x, y, −z, β, t) = Iβ(x, y, z, −β, t), (A 9)

and hence that

ζigw(x, −y, z, t) = ζigw(−x, y, −z, t), (A 10)

ζigw(x, y, −z, t) = ζigw(x, y, z, t). (A 11)

Thus we can be restrict our efforts to the region x � 0 and z � 0. Computations
can be further reduced by exploiting the fact that the integrand of Iβ depends on
x and z through x + βz only. Finally, we note that non-negligible values of Iβ are
essentially restricted to the regions between the rays x + βz = 0 and x + βz = σ ty.
Since Iβ is dominated by values of |β| near 1, this means that the IGW response is
mainly confined between the rays x + z = 0 and x + z = σ ty. Certainly, there is hardly
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any response upstream of the flow, hence we restrict computations to the octant
{x � 0, σy � 0, z � 0}.

Appendix B. Bleistein’s method
Bleistein’s method (Bleistein 1966) provides an asymptotic expansion for Laplace-

type integrals of the form

I (t) =

∫ t

0

g(τ, ε)e−f (τ )/ε dτ, (B 1)

whose main contribution comes from a saddle point of f (τ ) and from an endpoint
of the integration range. This method uniformly combines the contributions from the
saddle point and endpoint, and it is particularly useful when the two points coalesce
as a parameter changes.

The idea of Bleistein’s method is to write an approximation to I (t) of the form∫ ∞

0

e−(w2/2−aw + b)/εh(w) dw,

where a new variable w is introduced such that w = a corresponds to the saddle point
τs of f , and w = 0 corresponds to the relevant endpoint, τe, which we take as τe = 0
in the derivation. Comparing with (B 1) gives

f (τ ) =
w2

2
− aw + b, (B 2)

and

f (τe) = b and f (τs) = b − a2

2
. (B 3)

It follows that

a = ±
√

2(f (τe) − f (τs)), (B 4)

which can be considered as a measurement of the distance between the values of f

at the saddle and the endpoint. The sign of a is chosen in order to ensure that the
order of the endpoints and saddle is identical in the coordinates τ and w.

With this notation,∫ t

0

g(τ, ε)e−f (τ )/ε dτ =

∫ w(t)

0

e−(w2/2−aw + b)/εg(τ (w))
dτ

dw
dw

=

∫ w(t)

0

e−(w2/2−aw + b)/εh0(w) dw, (B 5)

where w(t) corresponds to the endpoint t and h0(w) = g(τ (w))dτ/dw. Next, we expand
h0(w) around the saddle point and the endpoint simultaneously by writing

h0(w) = α0 + β0(w − a) + w(w − a)k0(w), (B 6)

where the coefficient α0 represents the expansion around w = a and the coefficient β0

represents the expansion around w = 0. Hence we take

α0 = h0(a) and β0 =
h0(a) − h0(0)

a
.
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Now, differentiating equation (B 2) with respect to w and noting that w = a

corresponds to τ = τs leads to

dτ

dw

∣∣∣∣
w = a

= lim
w→a

(w − a)

df/dτ
= lim

w→a

(w − a)

f ′′(τs)(τ − τs)
=

1

f ′′(τs) dτ/dw|w = a

,

so that

α0 = h0(a) =
g(τs)√
f ′′(τs)

. (B 7)

Similarly,

β0 =
h0(a) − h0(0)

a
=

g(τs)

a
√

f ′′(τs)
+

g(0)

f ′(0)
. (B 8)

We are now in position to estimate I (t). Introducing (B 6) in (B 5) and extending
the integration range to infinity we obtain, after integration by parts,

I (t) ∼ e−b/(2ε)

[
α0

√
πε

2
ea2/(2ε)

(
1 + erf

(
a√
2ε

))
+β0ε

]

+ ε

∫ ∞

0

e−(w2/2−aw + b)/ε d

dw
(wk0(w)) dw. (B 9)

The remaining integral is O(ε3/2) and hence in principle negligible. However, for the
problem in this paper, we found that the accuracy of the first two terms was not
sufficient to provide reliable results with typical relevant values of ε and the range
of parameters considered. We therefore derive additional terms in the asympotic
expansion of the integral I (t).

To find a third term in the expansion, we expand the integrand of the integral
remaining in (B 9) around w = 0 and w = a in the same manner as before. Thus, we
write

h1(w) =
d

dw
(wk0(w)) = α1 + β1(w − a) + w(w − a)k1(w), (B 10)

where

α1 = h1(a) and β1 =
h1(a) − h1(0)

a
.

In terms of the function h0(w) these coefficients are

α1 = 1
2
h′′

0(a),

β1 =
1
2
a2h′′

0(a) − h0(a) + h0(0) + ah′
0(0)

a3
=

aα1 − β0 + h′
0(0)

a2
.

⎫⎪⎬
⎪⎭ (B 11)

To compute them, we use similar methods as before to obtain

h′
0(0) = a2 g′(0)f ′(0) − g(0)f ′′(0)

f ′(0)3
+

g(0)

f ′(0)

h′′
0(a) =

12g′′(τs)f
′′(τs)

2 − 12g′(τs)f
′′(τs)f

′′′(τs) − 3g(τs)f
′′(τs)f

(4)(τs) + 5g(τs)f
′′′(τs)

2

12[f ′′(τs)]7/2
.

⎫⎪⎪⎬
⎪⎪⎭

(B 12)
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Substituting h1(w) in (B 9) by its expansion (B 10) then gives

I (t) ∼ e−b/(2ε)

[√
πε

2
ea2/(2ε)

(
1 + erf

(
a√
2ε

))
(α0 + α1ε) + (β0 + β1ε)ε

]

+ ε2

∫ ∞

0

e−(w2/2−aw + b)/ε d

dw
(wk1(w)) dw,

where the remaining integral now contributes at O(ε5/2).
Further terms in the asymptotic expansion could be obtained by expanding

successively the derivative of the functions kn. This is Bleistein’s method, giving
a recursive scheme to find an asymptotic expansion of the integral. In this paper we
neglect the O(ε5/2) terms and hence ignore the integral remaining in (B 13).

When the saddle point τs is close to the other endpoint τe = t we derive an analogous
approximation by substituting (t − τ ) for τ in the expressions above. This amounts to
changing b from b = f (τe = 0) to b = f (τe = t), adjusting the value of a accordingly
and, substituting f (n)(τs) by (−1)nf (n)(τs) and g(n)(τs) by (−1)ng(n)(τs) in the coefficients
αi and βi .
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